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SUMMARY

The equations of motion of a conventional airplane penetrating a
gust are given in detail for determining the effects due to stability
on the gust load factor. A convenient numerical method is derived in

.

matrix notation which affords a systematic procedure of solving the
equattons for a unit Jump or arbitrary forcing function. The solution
for the airplane motions for the stick-free condition is modified by
neglecting the elevator terms so that the effects under similar stability
conditions may be calculated with the stick in a fixed position. If the
complete response of the airplane is lsmown,wing and tail loads may be
computed fairly conveniently. Sample calculations were performed to
illustrate the application of the equations.

INTRODUCTION

In the past the attempts to study the most effective stability
parameters in a gust have been hampered by the complexity of the equa-
tions and the time consumed in their solution. In numerous analyses,
the pitch effects are either considered empirically or neglected
entirely. Amethod of calculation that would be feasible, would give
reasonably accurate results, sad would require only a moderate expendi-
ture of time is, therefore, needed for analytical studies of airplane
motions in gusts.

Analytical solutions by means of operators have been made for
calculating the motions of a wing ~netrating a sharp-edge gust (see
reference 1). An extension of this method for solving the more com-
plicated equations would be impractical. In reference 2, calculations
were made by an iterative method for obtaining the solutions of the
equations of motion in two degrees of freedom of a canard airplane.
For this analysis the downwash effects could be neglected and the
eqwtions thereby considerably simplified.
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The present analysis gives an
finite differences for solving the
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applicatio-nof the calculusof
equations of motion of airplanes

a35

in
gustw air. The numerical solutions have been derived in matrix notation
&cm-the equations of motion in three degrees of freedom - vertical,
pitch, and elevator displacement - forward-speed variations being
neglected, and sample calculations are made. For a complete under-

.
standing of the method, a working knowledge of matrix operations is
required.
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SYMBOLS

lift; pounds

lift coefficient—-

angle of attack, radians

slope of lift

aspect ratio

curve, per radian

mass density Of air, slugs per cubic foot

gust--velocity,feet per second

forward velocity, feet per second

dynamic pressure

acceleration due

area of surface,

reference chord}

airplane weight,

to gravity, feet per second per second

square feet

feet

poudds

mass parameter

nondimensional distance penetrated into gust, chords .

.
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variable of integration

increment of s used in matrix solution

variable in recurrence formula
()A%

nondimensional discontinuity taken to

()

l~+c
lag of tail penetration

c As

normalized unsteady-lift function due
sharp-edge gust

normalized unsteady-lift function due
arbitrary-shape gust

nearest integer due to

to penetration of a

to penetration of an

equivalent normalized
downwash causedby

equivalent normalized
downwash caused by
shape gust

unsteady-lift function on tail due to
wing penetration into a sharp-edge gust

unsteady-lift function on tail due to
wing penetration of an arbitrary-

nofmalized unsteady-lift function for a unit jump of angle
of attack

equivalent normalized unsteady-lift function on tail due to
downwash caused by a unit jump of angle of attack on wing

normalized unsteady-downwash angle at horizontal tail due to
penetration of wing into a sharp-edge gust

normalized unsteady-downwash angle at horizontal tail due
to penetration of wing into an arbitrary-shape gust

normalized unsteady-downwash angle at horizontal tail due
to unit jump of angle of attack on wing

transformed unsteady-lift function

transformed unsteady-lift function C%
‘or ‘ail @ -%)

load-factor increment encountered by airplane, multiples of
acceleration due to gravity

pitch angle, radians
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elevator-deflectionangle, “radians

horizontal distance from center of gravity of airplane to
aero@umd. c center of wing, positive when aerodynamic
center is ahead of center of gravity, feet

horizontal distance from center of gravity of airplane to
aerodynamic center of tail, feet

distance between trailing edge of wing mean aerodynamic
chord to leading edge of tail mean aerodynamic chord,
feet

lag for downwash angle to be effective on tail when wing
undergoes a unit jump ofiangl.eof-attack

()

z~
~+ 0.23

As

lag for unsteady-lift function due to downwash to be effec-
tive on tail when wing undergoes a unit jump of angle of--

()

1~
~+ 0.80

attack
As

distance between airplane center of--gravityand elevator
hinge, feet

()~t
tail-efficiencyfactor ~

steady-downwashangle per unit jwnp of ‘angleof attack on
wing

asymptotic valueof downwash angle per-unit jump of angle
of attack on wing including eff%;ts
on tail

pitching moment of inertia of airplane

gravity, slug-feet2

due to unsteady

about center of

lift

moment of inertia of

moment of inertia of

slug-feet2

elevator about its hinge, shg-feet2

control stick about its pivot,

.

.

.

.
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r

K

Q

c&

%

due

7iF

total hinge
trailing

moment, positive when moment tends to depress
edge

gravitationalmoment
when moment tends

gravitationalmoment

of
to

of
positive when moment
slug-feet

elevator about its hinge, positive
depress trailing edge, slug-feet

control stick about its pivot,
tends to depress trailing edge,

.

control gearing ratio, angular stick deflection divided by
angular elevator deflection

ViSCOUS damping constant} in control syst~~ pounds per foot
per second

ratio of damping velocity to elevator velocity, feet per
second per radian per second

elevator hinge-moment coefficient due to angle-of-attack
change on tail; floating tendency is positive when
surface floats against relative wind

elevator hinge-moment coefficient due to elevator deflection;
restoring tendency is positive when surface is over-
balanced

elevator-effectivenessfactor

part of additional lift due to angular velocity of elevator
caused by acceleration of potential flow

part of additional lift due to angular velocity of elevator
caused by effective increase in camber

part of.hinge moment due to angular velocity of elevator
caused by acceleration of potential flow

part of hinge moment due to angular velocity of elevator
caused by effective increase in camber

Operational symbols:

D, D2 differential operators
()

~ d2
ds’~.

.
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~Y - single integration of arbitrary function y(s)

IIY double integration of arbitrary function y(s)

Matrix symbols:

E, F, G

{}

{}

U1
U2
U3

[M]

mSl, ...

constant elements in matrix solution

column matrix representing variables in recwrence formula

column matrix represent-ingthe forcing function due to gust
in recurrence formula

square.titrix representing inverse of the
cients of--An, D%, and D25 at point

[67s rectangular matrices representing—
in recurrence formula

matrix coeffi.-
m

constant elements

LJ row matrix
-—

‘l) matrices representing constant elements in recurrence
formula for stick-fixed condition

Subscripts:

e elevator

msx maximum

w wing

t tail

DERIVATION OF METHOD

Differential Equations of Motion

The evaluation of the effects of stability on the gust load factor
may be determined from an analysis of the motions of the airplane under
various stability conditions. In setting up the differential equations,
the following assumptions are made:

.

.

.

.
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. (a) The airplane is
its lateral axis and has

free to move vertically and to pitch about
an elevator restrained only by the force

produced by the viscous friction in the control system-.

(b) The airplane is in steady’level flight before entering the
gust and hEs initially no displacements, velocities, and accelerations
with regard to its degrees of

(c) The

(d) The
steady-state

(e) The
sient force.

forward speed is

forces producing
forces.

freedom.

constant.

the hinge moment on the elevator are

over-all aerodynamic force on the whole tail is a tran-

An equation of equilibrium exists between inertia and aerodynamic
forces and moments for each degree of freedom. In figure 1, the
forces and moments acting on a conventional airplane are shown. All
distances, forces, and moments are shown in a positive direction. The
three equations representing the incremental forces and moments become
(see fig. 1)

.

wAn=wQa=~+@wfhw +wAn” (1). # g

I SD% =wlwlkl~ - w2t Ant (2)

(3)

The transient aerodynamic forces produced by the airplane
penetrating the gust and the forces due to its motion relative to u
equilibrium position may be appropriately described by a set of
integral equations. That part of.the force due to the penetration of

.
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the gust is
the forcing

independent of the motions and is therefore
function acting on any dynamic system. The
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analogous to
forces produced

for each de~ee of freedom-must ~ accounted-l?orsep~ately. These
individual ~orces are described by a number of =elrs integrals.
If’superposition is valid, the individual forces may be summed to give
the total force acting on the body due to its motion. These aero-
mic forces may be converted to their correspondingload-factor
increments. Accordingly, for the motion of the wing, the load-factor
increment Anw is described by the following integral equation:

J’61Law(sl) =Kl ~gw(sl - s)D & ds
o - q“ %(sl - ‘)&(s) u ‘

K7
I 1

‘1 ~(s~ - s)De ds - K~() ‘1 c~(s~ - s)D26’ ds (4)
0 0

where the coefficients of the integrals are

()dCL ps
K4=—

da ~Fiicg

()dC!LK7=— SPV2
da WF5

(ka)

(kb)

(kc)

(4d)

The expression for the forces acting on the tall correspond to
the terms describing the wing together with the’forces causedby the
interaction of the wing and the tail. This last effect, calle~ down-
wash, introduces additional Duhamel~s integrals which are functions of
the motions of the wing, The summations of the integrals represent
the total aerodynamic forces on the tail and may be converted to load-
factor increments as follows:
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p S1 S1

Ant(sl) = Q& C@sp s)D & ds + K3
J

~Eg(sp s)D & ds -
o

K5
I
Osl ~%(S1- S)&l(S) ds - % fosl Eea( S1- S)h(S) ds +

% JOS1 C!&t(S1-
J

61
s)DG ds + Kg CL&l- s)De ds +

o

J
S1

K13
J

cLJsl-s)D5ds+K14 ‘l CLJAD%I
o 0

where the coefficients of the Integrals are

del
K3 = -K2 ~

K5 = K4

&1
%= -K5 ~

(5)

(~a)

(5b)

(5C)

(~d)

(5e)
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(5f)

(5g)

(5h)

(5i)

(5J)

Either experimental or theoretical values may be used for ~

appesring in equation (5i) and
(9A ad (~), in equati.n ~).

Some theoretical values are given in figure l(a) of reference 3. Other
expressions appearing h equations (5) and (~a) to (5j) are derived in
the section entitled “Aerodynamic Coefficients.t’With the load-factor
increments Anw and tit expressed as a function ofithe aerodynamic

coefficients and airplane configuration,equation (2) can be expressed
in terms of the airplane parameters. AU body moments are taken about
the center of gravity and assumed positive in the nose-up direction.

The hinge moment due to the aerodynamic forces, assumed ~ositive
when the trailing edge is depressed, is set equal to the inertia hinge
moment taken about the axis of rotation of the elevator. An expression
for the total hinge moment H in terms ofithe aerodynamic character-
istics and configuration of the airplane is required. The total hinge
moment is made up of the aerodynamic hinge moment due to a change in
angle of attack on the tail and the hinge momentidue to elevator
deflection.

.

●

.
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The equation for the total hinge moment is as follows:

“J
sl

E=.K1#l_+K16 ~ A.nds - K1~ + Klg DO +

J
S1

J’
S1

Klg Ca(sl - S)AT.l(S)ds - K20 Ca(sl - s)De ds +
o 0

J
S1

J
S1

@l q.Jsl - s)D% ds - K= W(S1 - S)D * ds +
o 0

K23b - @4 Da (6)

where the coefficients are

K15 = - ~U_VSeC&Ce (6a)

K&-g CSeCe@& (6b)

K17 = - p 2S Ce~~V e

Z*
Klg = $V2SeceC&~

(6c)

(6e)

(6f)

(6g)

(6h)
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The Dtismelfs integrals appearing in equati,on(6) are not due-to
any unsteady hinge moments, but merely afford a mee.nsof-expressing
the effects due to downwash. These integrals establish a relationship
between the changes o&an@e of attack on the tail caused by the changes
of angle of attack on the wing. If the value of the-expression in
brackets in equation (6j) cannot be determined experimentally, its
value is given theoretically with the aid of figure l(b) of reference 3.

For the purpose of simplifying the differential equations,
equations (2) and (3) are rewritten as follows:

D26 = K25 Anw - K26 Ant )

where the coefficient~ are

Wltcz
K26 = —~2

V2
K27 = (k + Hezh - rIs)7

K2B =
( )
1, + $l*V$

%9=- (% )+ rHs g
/

●

✎

(7)

.

.

(7a)

(P)

(7.)

(7d)

(7e)

.

.
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Aerodynamic Coefficients

.

.

Unit

Unsteady lift.- Theoretical unsteady-lift functions due to ~oth a
jump of angle of attack and a penetration of a sharp-edge gust are

given in reference 1 for elliptical surfaces of several &pect ratios
for incompressible flow. The”normalized functions are reproduced here
in terms of the whole reference chord of the wing as distinguished from
the half-chord notation used in reference 1.

For a unit jump of angle of attack,

.1.080s
%_&(s)A=3 =1.000 -0.283e

~a(s)A=6 = 1.000 - 0.361ea’762s

~(s)A=m= 1.000- 0.16~e-*o~s . 0.335eQ~m0’

For a penetration of a sharp-edge gust,

-1.116s -6.40s
~g(s)A=3 = 1*W - 0,679e - 0.227e

(8)

o.44&4”5ms -
Img(S)A=6 = 1.000 - 0.272e-1*4~s - 0.193e-6’OOs (9)

%g(s)A=@ = 1.(X)() - 0,23~eQ*116s - 0.513e -o.728s - O.lne -4.846

J

The expressions for the finite-aspect-ratiounsteady-lift functions
were derived using the midchord of the elliptical surface as the
reference chord.

b establishing the unsteady-lift functions on the tail, the
exponents of the foregoing expressions must be multipliedbythe
ratio c/et in order to cQnvert these expressions f’r~ tail Gbc@9 to
wing chords since they involve the distance traveled by the airplane
measured in terms of the wing chorcl,

Unsteady downwash.- The theoretics val.w Q: the wsteady-dowmwasb
angle at the horizonta tail due %Q Q wl~ .&gg of @L@e @ a~~4Ck CJL!

7the wing is obtaiagcjby evs.lwtl.w 9qwtiQm (1 of re?erence L $Q~ w
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average confi~ation. The result may be normalized and approximated
by step functions to give the desired functiori Ca. “However,the curve
in figuxe 2(a) is seen to be principally a function of the distance
between’the trailing edge of the wing and the leading edge of-,thetail
and this distance, due to configurationplus an additional aerodynamic
lag, account~for the interval between negative smd positive step”
functions. For the unsteady-downwash-anglefunction due to penetration
of a gust. cg, anadditional lag of 0.75 chord is applied to these
step functions. (See fig. 2(b).) Figure 9 of reference 4 indicates
that tail length does not affect the magnitude of the function appreci-
ably butimerely tends to affect the interval of discontinuity. Ih
order to generalize the functions Eu and cg with resyect to air-
plane-tail length, the lag interval is considered as a sum of the
distance from the trailing edge of the wing to the leading edge of the
tail plus an additional aerodynamic lag of 0.23 chord. The steady-
state values “of C& and cg were found to be approximately eqyal to
the value for dc/du.

The effective unsteady-lift function on the tail due to the down-
wash from a unit jump of angle of attack on the wing may be determined
by a similar procedure. With the results obtained from the solution

.

of eqmtion (1) of reference &,–equation (2) in this ssme reference can
be evaluated. T!heresulb--for an average configuration,when normalized .

and approximated by step functions in a manner referred to previously,
give the desired function (&. (See fig. 3(a).) The effective

unsteady-lift function due to downwash which results from the penetra-
.

tion of the wing in a sharp-edge gUSti-CLcg is obtained by applying an

additional lag of 0.75 chord to the step functions describing CLca.

(See fig. 3(b).) By an analysis similar to the one used to generalize
the functions for unsteady-downwash angles, these two unsteady-lift
functions are generalized with respect to tail length by considering
the total-lag interval from negative to positive step functions as a
sum of the distance fromthe trailing edge of the wing
edge,ofithe tail.plus an additional aerodynamic lag of
The steady-state value d~ida is approximately equal
the value for de/da.

Trsmformation to Matrices

Stick-free stability.- The integral relationships
trsasforming the differential eqution into a form for

to the leading
0.80 chord.
to 90 percent of

required for
numerical solution

are given in appendix A. In the process of obtaining the numerical
solution, which is in the form of a recurrence formula, a number of
constants were used to simplify the writ- of the final solution.
These constants, which appear as elements of a sqyare ~trix and several

.

rectangular matrices, are in terms of the airplane stability
.
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coefficients K1 to J@9, the tramfonned unsteady-lift functions B

and C, and the increment L&. The constants K1 to @g sre defined

in appendix B. The constants given in appendix B sre for a six-point
sol.ution, that is, for a recurrence formula containing six previously
known values of the variables to be solved. A six-point solution was
selected in this paper since it is believed that the transformed
unsteady-lift functions B and C can be approximated by six values
at 1.5-chord intervals with sufficient accuracy even thou@ only a
moderate expenditure of time is required. The accuracy of the numerical
solution would largely depend upon the size of the interval and the
rapidity of the motions that the airplsme undergoes when disturbed from
equilibrium. For airplanes with a high mass parsmeter, a
of inertia about the center of gravity, and a high moment
for the elevator and stick, the accuracy of the method is
be improved for the given six-point solution.

Certain terms appearing in the equations for the E
stants defined in appendix B have the subscript m - ZCL
terms in the equations for the G constants iq this same

2fi
—+ O.&

the subscript m - lC, where 1~ = c and Ze=

The physical significance of these terms% the equations
constants is attributed to a lag of tail forces and hinge

high moment
of inertia
expected to

and F con-
and certain
appendix have

—
.

for &he
moments

existing on the tail which were caused by the effects of the unsteady-
downwash functions. (See figs. 2(a) and 3(a).] In order to express
these effects mathematically, two values of the constant must be
evaluated, one value with the term containing the subscript neglected
and the other value with this term retained in its calculation. For
values of m < 2~ and m < ZG, the first values of the constants are

used in the calculations; for extended values of m, that is, m > la
and m > te, the second value is used. Since the numerical evaluation
is made for a predetermined interval, the amount of lag specifiedby
the discrepancies in the unsteady.downwash functions cannot conveniently
be taken into account exactly; therefore, the smount of lag is taken
to the nearest vslue of m.

When the constants E, F, and G are assembled into a square
matrix and a series of rectangular matrices, the three transformed
equations may be solved simultaneouslyby an inversion of the square
matrix. The variables describing the motion of the airplane cm then
be solved for the stick-free condition by the following recurrence
formula:
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H35 . [M]

-m

where the forcing-functionmatrix ~U2~ is defined in appendix C for
..
LU3J

either a sharp-edge gust or-one of arbitra~ shape. With the aid of

.

(lo)

equations derived in appendix A, equation (10) is evaluated in a manner
analogous to the solution of the wing penetrating a sharp-edge gust
described in the section of the paper entitled “Solution of One Degree
of Freedom.”

The rectangular matrices [S] are evaluate~ together with the

square matrix ~M] in terms of the constants E, F, and G defined in
appendix B. The square matrix represents the inverse of the matrix of
the coefficients of An, I%, and D2b at the point m.

Stick-fixed stability.- The motions of the airplane with the
elevato~in a locked position may be determined from the stick-free
stability eqyations by modifying the matrices appearing in equation (10).
The effect of eliminating the elevator motions is to ellminate in the
numerical solution certain E and F constants and all the G constant6.
Also, appropriate changes in the recurrence formula are made by
modifying the sqwre and rectangular matrices and the column matrices
containing the variables and their integrations describing the elevator
motions. In appendix B the modified values of the matrices rtio andm]o
are presented and are written with a subscript zero to differentiate
them from the stick-free condition.

The forcing functions UI and U2 remain unchanged whereas the
function U3 is eliminated. In accordance with the previously cited
changes, the following recurrence formula is obtained and can bs
evaluated in a manner smhr to that for the sick-free condition:

&l
tie‘1

. .

.

.

,

.
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APPLICATION OF MWI!EOD

Solution of One Degree of Freedom

The comparison of a response to a dynamic system calculated exactly
to the res~nse calculatedly the numerical method derived in appendix A
will help clarify this method as well as give an estimate of the accuracy
to be expected when applied to a more complicated system. In order to ‘
demonstrate the validity of the numerical integration method, a response
to penetration of a sharp-edge gust has been calculatedfor a wing
restrained in all but the vertical direction. The change in lift
coefficient due to the gust and due to motion has been calculated as a
function of wing penetration. Assuming a unit jump in angle of attack

duetothe~t ~= 1 gives the equation of motion as

where Pg is defined as the mass parameter of the wing as follows:

(12)

2W
~g = d~

— Spc
g da

In reference 1, Jones has solved equation (X2) by operational
methods for different.valuesof maSS parmeter vg. All. calculations
were made for a wing of aspect ratio 6. In reference 1 the unsteady-
lift functions C!Lg and C!La are defined as functions of half-chord

while in this paper they are a function of whole chords as well as
being expressed as a fraction of the steady-state value. The exact
solution of the response usibg the unsteady-lift functions for aspect
ratio 6 and a value of Vg = 13.2 (or in Jones* notation v = 124) is
shown in figure 12 of reference 1. This curve is reproduced herein In

—

figure 4 as a function of whole chords.

.

.
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The transformation of-equation (12) to the following recurrence
formula can be accomplished with the aid of the equations found in
appendix A:

[

%’

%-1

P
%-2

d% lm&

J1 -(

4B121@ 4B3 =4 4B5 % %-3

%m-&%*- ~L+llg3’3’3’3 ‘3’3’3 ~k4
-— ——— —— — (13)

II%-5
%-6. ..

where

( z
hm ‘ %:1 + ‘s & % + $ C%n-l-24 %-2 + &k3 )

(14)

The following numerical values are substitut-ed

dC!L
—= l.~ofi
da

1—= 0.0760
lJg

As = 0.75 chord

B(s) = 1 - C~(S)A=6

in equation (13):

.

.

(where the values ~, BI,-. . . B6 are computed for the inter-

val As = 0.75 chord from normalized values of the function C&(S)A=6

shown in fig. 9 of reference 1). The reason for choosing a smaller
interval is that the mass parameter ~g is ve~ low. T& resulting
recurrence formula is given as follows:

(
CL

mm=“&- 1.50sckz””- o.075761m-=- 0.0299GIL-1+ 0.0162~-2 +

)
o.oo256q-3 +0.00140cq_4 -t-o.00167~-5 + 0.000265C~-6 (u)

.
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The forcing function CL% is computed for an interval

of As = 0.75 chord from normalized values of the curve of figure 9 of
reference 1. Equation (15) can be computed step by step in a manner
similar to that described previously. The results of these numerical
computations are shown in figure h together with the exact solution
obtained by operational methods.

Solution of Stick-Fixed Condition

In order to establish a general procedure for performing the
necessary calculations in a stability analysis, an illustrative example
is presented in detail.. The aerodynamic characteristics corresponding
to the configuration of a modern tr~sport ai~lane were selected. The
parameters necessary for a stick-fixed analysis are shown in table 1.
Values of Zt and Zw are given for three center-of-gravitypositions.
Accordingly, the stability constants KI to @g maybe evsluatedby

eqyations (4a) to (4d), (5a) to (5j), (6a) to (6j), and (7a) to (7e).
The results are shown in table II for those constants involving only
the stick-fixed condition.

The unsteady-lift functions due to a unit jump of angle of attack
on the wing or tail were calculated from equation (8). Note that the
tail unsteady-lift functions must be expressed in wing chords by
multiplying the value of S by c/et. The B(s) and C(s) functions
for infinite aspect ratio for an interval of As = 1.5 chords is shown
in table 111. Together with the constants K1 to @g, B(s), C(S),

and As, the E, F, and G elements can be calculated with the use of the

equations in appendix B. These elements of the matrices ~M~ and [S~
are shown both for the stick-free condition and for the stick-fixed
condition in this appendix. Accordingly, the values for the constants E
and F required for the stick-fixed condition are shown in table IV for
an airplane with the center of gravity at 25 percent of the wing mean
aerodynamic chord. The E and F elements are given as a function of the
variable m in the recurrence formula. None of the G elements are
required for the stick-fixed condition. Since a discontinuity due to the
effective unsteady-lift coefficients on the tail caused by a unit jump
of angle of attack on the wing CLea occurs at m = 2, two values of

the elements El, Fl, andF2 appear in the matrix [Mjo. Consequently,
two values of the matrix M. have to be calculded.
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H
U1

The forcing functions represented by the column matrix U2 can be
U3

calculated by equation (Cl) fur a sharp-edge gust or by equations (C2)
and (C3) for an arbitrary-shape gust. The unsteady-lift functions due
to penetra’ttonof a sharp-edge.~st CLg(S) were calculated by equa-

tions (9). By a method similar to the one used for the unsteady-lift
functions due to a unit jump of angle ofiattack on the wing, the tail
unsteady-lift function due to penetration of a sharp-edge gust CLgt(S)

is expressed in wing chords by multiplying the value of S by c/et.
The effective normalized unsteady-lift coefficient on the tail due to
wing penetration ~Cg(s) is shown in figure 3(b). Although the dis-

continuity in this function for the configuration considered occurs
at m = 3 to the nearest integer, the value at m . 2 was chosen for
simplification since the length of the discontinuity determined by
reference 4 is not very accurate and the length of discont-inuitydue tm

l~+c
lag of tail penetration T = .C*6 is equal to 2 to the nearest

integer. Therefore; all discontlnuities are made to occur at m = 2
in the sample calculations. The forcing functions UJ and U2 have
been calculated for a sharp-edge gustifo~a”airplane with the center .

of gravity at 25 percent-of the mean aerodyu~ic chord and the results
are shown in table V,

.

The responses were calculated by equation (11) together with the
formulas given by equations (A5) and (A8) ofi”appendixA in a manner
previously outlined for the calculation of the simplified exsmple. In

--

figure 5 the time histories of acceleration increment and angle of
pitch about the center of gravity of the airplane penetrating a sharp-
edge gust are shown frgn an evaluation of the recurrence formula for
an average center-,of-gravityposition. The load-factor incrementiat--
the center of gravity can be broken up into wing and tail load-factor
increments by evaluating eqwtzton (4) fordetermining Anw(s) and
then subtracting that function from An(s) to obtain the load-factor
increment-on the tail Ant(s). The results ofthese calculations a-e
also shown in figure 5.

--

Although sample calculations are not given for the two other......
center-of-gravity-positions,the results are shown in the form of
maximum load-factor increments Anm for a sharp-edge gust and two
gradient flat=topped gusts at three center-of-gavity positions in
figure 6. The responses to the gradient gusts can either be calculated
by equations’ and (C3) or by the alternate method previously described,
which in this case would be “themore expeditious since three gust-shapes
are considered in this paper.

-.

●
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An estimate of the accuracy to be expected in the solution of the
equations of motion by the matrix method may be determined by an inspec-
tion of figure 4 where both the exact and numerical solutions are given
for the lift coefficient of a wing penetrating a sharp-edge gust. The
numerical solution approximates the exact solution very well, except for
the discrepancies occurring at the beginning of the CUIWS. mi?con~- ....

tion will exist in most cases because the first point of the motion is
computed from only those terms at time m of the recurrence equation,
the second point is cmputed from those terms at thnes m and m - 1,
and the third point is computed from those terms at times m, m - l)
and m - 2. In like manner, the other points can be computed until the
full recurrence equation is in use. The error reduces as the mass
parameter increases since the motion for the first few calculated values
is reduced. Consequently, for low mass parameters where the motion is
rapid a smaller increment of As than 1.5 chords must be taken. If
smaller increments are required, tk valuesof B(s) and C(s) may
have to be approximated by more than just six points, otherwise the
assumption that these functions are zero after the last point is not
justified. In order to overcome this difficulty, the recurrence
equation should be calculated from m = O to m = 6 for an increment ,
of As less than 1.5 chords. The recurrence formula is then reevaluated
for an increment of As = 1.5 chords by using values of the veriables
and their corresponding integrals taken frcm the first calculation. In
addition to the effects of mass parameter, the accuracy is also a
function of the forcing function and their corresponding integrals
taken from the first calculation at intervals of As = 1.5 chords. For
forcing functions having a large initial slope, the motion for the first
few steps would again be large and therefore the errors corresponding .

to its calculation would be substantially increased. As before, the
errors may be minimized by using a larger number of small increments
of As. Attention to the details of calculation for the sources of
error yointed out, however, should lead to accuracies of calculation
by the matrix method for the stick-fixed and stick-free conditions that
are at least as good as those shown for the single-degree-of-freedom
case in figure 4.

The assumptions made in the derivation of the differential equations
impose certain limitations other than that of confining the treatment
to longitudinal-stabilityeffects alone. The length of the transient
response to be calculated is limited since the effect of variations in
forward speed was neglected. The inclusion of variations in forward
speed, however, would unduly complicate the problem at the present time.
Another ltiitation to consider is the effect the pilot has on the
handling of the airplane. If the pilot’s reactions We proportional
either to the accelerations, velocities, rate of change of acceleration,
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or ta various combinations of them, the restraint can be included in
the calculation of the airplane motions by assuming these effects on
the stick are due to an automatic piloti However, knowledge of the
pilot’s bebavior when flying througl.-turbulentair is instificientab
the present time to warrant any such representation.

Examination of the sample totsl-load-fac~orresponse curve in
figure 5 shows a discontinuity occurring approximately at the time when
the tail first enters the gust. As seen, the discontinuity arises from
the load calculated to be on the lzziland is a result of the combination
of the downwash effects on the tail with the effects of-gust penetra-
tion. Although this-discontinuityin the response does not actually
exist, it is allowed to remain in this form for the determination of--
the response to arbitrary gust shapes when the response to the sharp-
edge gust-is used as an indicial response. In this way, the new
response does not depend upon the manner in which the discontinuity is
faired.

The curvesshownin figure 6 illustrate the results--ofthe use of
the method for determining the effect–of center-of-gravityposition and
gust-gradient distance on the gust-load response of a particular air-
plane. The curves show that the effect of..airplanestability may be
important in determining the gust load factor on an airplane. The gust-
load-factor ihcrement can be appreciably affected by the center-of-
gravity position when the airplane is traversing large gradient gusts.
A rearward center-of-gravityposition, representing a decrease in
stability, increases the maximum load-factor increment k. On the
other hand, with the center of gravity in a forw~d position, the
stability is increased and the correspondingmaximum load-factor
increments decreased.

All the computations involved in the solution of the complicated
integral equations of motion of an airplane penetrating a gust have been
reduced by the method of this paper to simple, but lengthy, arithmetic
operations. The use of some type of high-speed automatic computing
machine (such as the %11 Telephone Laboratories x-66744relay computer
in use at the Langley Laboratory) would help overcome the difficulty
of performing these computations. If the problem is set up in a machine,
“the len@h of time required for the computation of’the stick-fixed
stability equations for a single condition would usually require some-
what less than 1 hour to approxwtely 8 hours, depending on the type
of machine. The initial time required for setting up the problem on

the machine would appear less significant when the number of--solutions
of the equations is increased.

.

.

.
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The numerical method derived in matrix notation for solving the
differential equations of motion provides a means for determining the
effect of the various stability parameters on the gust load factor in
a reasonable time considering the complexity of the problem. Although
the method predicts the total load-factor increment on the airplane,
separate ying and tail loads may be computed with comparative ease.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics

Langley Air Force Base, Vs., November 8, 1949
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AIT’ENDIXA

SOLUTION OF EQUATIONS BY A METEOD OF NUMERICAL INTEGRATIONS

The solution of the integralequations may be accomplished by the
calculus of’finite differences. A recurrence formula is obtained in
this manner for the variables in terms of their preceding values and.
the integrals of the preceding values.

Two mathematical operations are required for a solution of the
equations by the method considered in this paper. First;a numerical
evaluation of the various Duhamel’s integrals expressed as functions
of the variables describing the motions ofithe afrplme fS requfred.
Second, a method is necessary to evaluate numerically a relationship
between the variables snd their respective first and second derivatives.

Since the indicial response C_&(s) appesring in the Duhamel’s

integrals approaches unity asymptotically, a convenient substitution can
be employed,so that-the required integrations for succeeding intervals
need n~t be continued indefinitely. For this simplification the
substitutionsrequired for the unsteady-lift functions are:

The
the
the
Uct”
the

B(s) =1 -
1

C%(s)
i

J
(Al)

c(s) = 1- ~t(s}

functions B(s) and C(s) approach zero quite rapidly; therefore,
integration of the product of this function with the derivative of
arbitrary function may be carried out in a few steps. If the prod-

o~the functions to be integrated be y(s), the desired value of’
integral at petit m can be evaluated in recurrence form for six

.

*

intervals with the aid of Simpson’s rule by the following equation:

1)

“Ym
Y~-1

H
Yin-2

J

m .h~~~~~~l yin-3
y(s) ds =

o ~1 A3’3’3’3’3’3’3y~-4.
Ym-~

YmJ5

where As is the interval of integration of the function y(s).

(A2)
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The Duhamel’s integrals containing the downwash functions may be
simplified to ordinary type of integrals,.,because step functions
represent the indicial respo~ses. The integrals containing these
functions may be replaced by two simple inte~als, differing only in

..

the upper limits of integration by an amount specified in the dis-
continuity occurrimg in the indicial responses. As an example, the .1

following Duhamel’s integral may be replaced by two integrals (see
fig. (3)): ,“

I
S1

J
61

C+(S1 - S)k(S) ds = -0.158 AU(S) ds +
o 0

The evsl.uationof the Duhamel~s integral now merely reduces to the
second problem, namely that of relating the variable to its first
derivatiw since the integration of the load factor is the first
derivative of the displacement divided by the acceleration of gravity.

When approximating the successive derivatives of a function
numerically, the accuracy of the operations @creases for each operation
since the curve approximating each derivative would have to be of a
lower order. As an example, M a function is replaced numerically by
parabolic segments, the numerical approxhations to the first derivative
would be a series of straight-line segments; the second derivative,
obviously, would be mesxdngless since its numerical approximation would -
be a constant for any value of the original function. On the other
hand, a numerical method consisting of successive integrationswill
tend to reduce the error for each series of operations because the
curve approximating each successive integration would be of a higher
order. Thus, if a function is replacedby parabolic seggents, the
numerical approximation to the first integration would be a series of
cubic segments and the numerical approximation to the second integration
would be a series of cpartic segments. Consequently, for each con-
secutive integration, the accuracy of the numerical approximations tends
to increase.

In the numerical solution, the highest derivatives of the variables
can be conveniently treated in the differential equations. Any
derivatives of lower order may then be obtained by successive
numerical integrations. In.the previously derived equations of m&ion,
no derivatives csfhigher order than the second occur; therefore, two
successive integrations are required to establish the relationship
between the variables and their respective derivatives.

I
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The first numerical integration of the variable y(s) may,be
performed in the following manner: ●

J% Jal-l J
s~

Y(S) ds = y(S) ds + Y(S) ds
o 0 %-1

.

(A4)

When the function and its integral from O tc- ~-l me known, the
value of the integral from the increment ~.1 to ~ may be obtained

froq the known values Yin-l,Yin-2,ym-3j . . . ~ and the ~~

value ym. The integration over the increment from ~-l to ~ can

be yerfprmed ina manner smalogous to that used in Simpson’s rule. In -
lieu of passing a parabola through these points, a cubic assumed to
pass through four points may be used to accomplish the same purpose
with increased accuracy. Equation (A4) may be rewritten

(Ym 7

(A5)

For the double integration, an analysis similar to the one
previously deriivedmay be utilized

Sm S

JJ J

Sm ““

J

Srn.l
y(S) ds ds = Iy ds =

00 0 0

or, in terms of the double integration symbol

Iy ds +
J

‘m Pds (A6)

%-1

IIy,

(A7)

If the value of & fromequation (A5)issubstituted inequa-
“~ion(A7), the double integration of the function y(s) cau be
written in terms of the previously determimd values of the function,

.

.
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. its first and second integrations, and the function y(s) at the
next desired value ~ as follows:

27

The solutionof the equations of motionby equations (A5) and (A8),
together with the evaluation of Dulamel’s integral with the aid of
eqyation (A2), can now be accomplished by a systematic procedure.
Complete histories of the accelerations, velocities, and displacements
of the airplane are computed simply by evaluating, respectively, the

variables ym, c dand . The procedure can be continued for as

many steps as desired.

Ih order to satisfy the initial conditions of the differential
equations, the initial values of displacements, velocities, and
accelerations may be substituted into the numerical solutions. For the
problem considered in this paper, all the initial values of the dis-
placements and velocities are zero, since the airplane is assuned to
be in steady level flight before being disturbed~ the gust. If the
gust velocity also increases from a zero value at time zero the initial
accelerations are zero as well. The numerical solution may be regarded

as a recurrence formula for the values ym, 2 ,mdI < which con-

stitute the acceleration, velocity, and displacement, respectively.
With the values at m together with
m- 3, s . ., the values at m + 1
other values of m can be obtained.

those found at
can be found.

m- l,m-2,
h likemanner,the
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CONSTANTS

APPENDIX B

USED IN CALCULATIONS

When the differential equations of motion are transformed for
numerical evaluation, they can be written more simply by combining
groups of constants due to the airplane parameters into one constant.
These substitutionsare made in equations (4) to (7) snd are tabulated
as follows for convenience of calculation:

K~ =

%=

K3 .

K4 =

K5 =

%5’

K7 =

K8 =

Kg =

()dCL pS

KwzFcg

K4
St

T

.——

.

.
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.

WZ+C2
%6’—

r?

%9 = -(H, + rHs)g

When the equations of motion are transformed to numerical form by
making use of the integral equations derived in appendix A, terms
common to the same the interval_,that is, at times m, m - 1,
m- 2,... are grouped into one constant. These constants are
obtained for ~ach the interval, each eqwtion of motion, and each
variable and it-sintegrals describing the motion ofithe airplane. The
constants formed by this grouping procedure are elements in the square
and rectan&ulm matrices in the recurrence formula.

The
motion.
equation

El=l+

constants are grouped with respect to the three equations of
The following constants are due to the transformation of
(1) into recurrence form:

[
&AsIQ+-

.-1
0.158K6+ (1.158K6)m-Z~+K5 - + As (IQ& + K5@

E2 =
( )[..
&As 2 -K7 “-K8 + 0.158K9 -

~*1~8K9)m-zC~ + &As~7As ~+ ‘- --
—.

K8As~+K10 - Kll -
( )1

0.158K12 + J-.158K12~-zcL +

A

( )+ ‘K@() + KuC()

.
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-,@ - K5 + 0.158w. - (@ f6)m-zk-l

K@o + 4Kg~I)- Klo + KU + O .158KU - (1.158K12)m-tQ-l

[
&As -K7 F I@ + 0.158K9 - (L158~)m-z~-~ - $AS(K7B2 + K@

[
&A8K7+Kg- ] - NK7’3 + ~c3)0.158Kg + ~’U8~)m-ZCL-3

2
~ AS(-K7B4 - Kgc4)

$jAS (-K7B5- ‘8C5)

’10= * &( -K7B6
)

- Kgc6
.

11 =K7+K8- 0.158~ + (1.158Kg)m-zh-~

.

(i
%4

:12 )
=K13As -~-~Cl ‘K14

:13 (
~c

)
=K13 As-:&3 2

E17 = -K13 As $ ‘6
.
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E
E19 =&As 4+~-

( 1 ‘Sbkk%+%%) .-
o.l~@ -I-1.158K&.Zq-2

E20 =&As
r
-~ - K5 + 0.158K6 -

@@)m&~ + $As(K433 + K5C3) “’--

E21 = $ As(K@4 + K5c4)

E22 = ~ As (K4B5 + K5C~)

)’23 = ~ @(K4B6 + ~c6

E24,..=%(As )
[%

2K72 -K7~
+K8&-%3~-o”13q&+

(1198% &z~L-~ +As@ ~ + KIO $ ~ + Ku ~ - Kll $,1 + “’

o.158K~ 19 -

1 :..

—.
(1.158K12 ~)m-zcL-l

z .

[4
E25 = &s)2 -K

~. . -—

‘K7~ -K8&+K8 ~ + o.lxKg & -72 ●

5
)]m ‘-2%-2

.——

K8 &’.:.m ~ -_.0●158K9&

.

.
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. (E29 = ~ AS Klo% - Kllc6)

(

9 co

)

4
E30=3ASK135AS _K13h7+K14 -K14As7C1

.

(
~ - K1~)E31=&As-K13@&13As 3 -K~4AS$C2

(
co

’32 =&sK13As&-K13As~ i-K14) - K14 AS $ C3

E33 = -K~4As ; C4

E34 = -K~4As $ C5

E35 = -K14As ; C6

E36 = K13

The following constants sre due to the transformation of equation (2)
into recurrence form:

‘2= 1+ (~As)2&%5 + K8K26 - o0158~6 + (l@K9K26)m-zW3+

[

co
&As K7q5 As ~ + K1&5 - %%6 & ~ + ‘11%26+ 0C158K@26 -

~- C-J +iAs(-K@@o - ‘ll~6co)
(1.158Ku%6) z

~3 = & As&3K26 & ~ - K13~6 AS ~ + K14~6) - K14~6 AS ~

F~ = -K4q5 + *6 - 0.158K&6 +(l*158K~6)m-~CL-l
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[
F~ =~As K7K25 - K8K26 + 0.l~&9K26 -

1
@-*158K9K26)m-1%.l + <

0.lS8K12~6 + (1*1.58K@26)m-z~-l

F6=&AB
L 1
~K~~5 + K@f26 “ 0.15%6 + (1.15~KgK26)m-lcL-2 +

~As(-K7%5%? + ‘81%6C2)

[

F7 = && K7K25 - ~26 + O.1?8K9K26 - (&K9K26)Ln-ZCL-~ -

F8 s ~ AS (-K7KP5B4+ K8K26c4)

( 2C5 “+ K13~6 ?j 2F13 =As K13%6 ~.
)

(
F14 =AS -K13K26& +K13K26 $ C3

)

’15 = K13K26As $ C4

4F16 = K13K26& ~C5

+-.

●

.J

●
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.
’17 = KI.3q6As $ C6 ‘

.

F18 = ~ As ~~~ + K5K26 -
1

0.158K6@6 +,(1.158K6K26)m-ZcL-l +

$As(K4K2~BI - K5K26CI)

:A@.K2~% - K5K26C2)

[
F~o = &AS -K4~5 + *6 -

1
0.158-6 + ~. 158%6) .- ZCL-3 +

$ “~k%5B3 - %%6C3)



K11%6 ; C3 - 0.158K12~6

F27
(

= $ As KloK2>4 +-KuK26C4)

)F28 = $ ‘e~10%p5 + K~~6C5 ‘

F29 = * As(K10&~6 + KU.K26C6)

’35 = K1,!+K26AS ~ C6

F36 = -K13K26

.

.

The following constants are due to the transfomnation of equation (3)
into recurrence form:

G1
E‘@9-&A’ 16- 1

0.16~lg + (I-.161x19)m-Ze



.
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G’ =K’7 +(& ’)2~7 - 0.W%2, + p.m’o)m-,~ -

[
~ASK18-

1
o.16~1+ (L167K&-2e

.

%= -K23As &

%o=$3~&

[ U~1=~As K16 - 0.167K19+ (1.167K19m-l~-l

Gw=&
[

As -K16+ O.167K19-
1

(1“mhg) 111-2~-2

[
1 AS K16 - 0.167K19 +%3 = ~ 1@~167K19)m-Zc-3

.
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[
G15=&f3’K17Aa&-Kw 0.16?%0 As g + (1.@%o ‘s &)m-,c-, + - “

0.167~ - ( 1.16%~ m-le -2]

%9 ‘ &A’(%3~ & + %4)

G20 = %3

The elements due to the constants E, F, and G are fit intx---
matrices which modify the variables and the integrals describing the
motion of the airplane. The matrix describing the variables at time m
is a square matrix that must be inverted in order that the variables
at–time m can be solved simultaneously. The elements for this
inverted matrix form the square matrix [M] which appears in the
recurrence equation (10). The elements of the matrix @] is defined
in terms of {he constank E, F,

[1M=

and G as

&l ~ M3

M4M5%

M7 M8 ~
—

●

follows:

.
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where
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Ml =
F~G3 - G2F3

N % = ‘1G3 ‘N%E2

G2E3 - E2G3
% = N % = ‘1E3 ‘NE1F3

E2F3 - F2E3
M3 =

N % ‘ ‘l@N- ‘1F2

W3 - F1G3 E2%l - E~G2
M4 =

N %= N

E1F2 - F1E2
M9 =

N

where

R = ElF2G3 + Fl~3 + ~E#3 - %F@3

The matrices describing the variables and

. . .

- E1G2F3 - qE#3

the integrals at
times m -ltom- 6 form a set of rectsa~ar matrices. ~ese
rectangular matrices consist of the elements deftied by the
constants E, F, amd G. The matrices are given for each the interval
as follows: -

[

E18 E2k E30 E4

[1
S~ = F~8 ’24 F30 F4

GU %4 %7 G4

[

%9 ’25 E31 E6

[1‘2 = ’19 ’25 ’31 ‘6

’12 ’15 %8 ‘6

F5 F12 Fll ’36
I

% % % %01

1
%3

%3

G
9
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r%?0

[1‘3
= F20

L’13
p

[1
S4 = F21

o

[1
S5 = F22

r%23
[1
S6 =

1

’23

0

%26

’26

’16

%27

’27

0

%28

’28

0

%9

’29

0

E32

’32

’19

’33

’33

0

E34

F34

o

’35

’35

0

All the square and rectangular matrices
previously are for the st-ick-freecondition.

E7

‘7

‘7

E8

F8

o

%

F9

o

.
-Elo

Flo

o

1
%4

’14

‘lo

1
%5

%5

o

1

’16

%6

o

‘1

%7

F17

o
A

which have been
The recurrence
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.-

defined
formula

$iven by equation (11), however, is a solution for the stick-fixed
conditions and can be obtained by modifying the stick-freematrices.
!Chismodification consists of+sliminating all the G constants and
those E and F constamts’in the rectangular matrices which are post-
multiplied by the variables in the column matrices that represent the
acceleration, velocity, and displacement’of the elevator. The matrices
for the stick-fixed condition are mitten with a subscript zero and sre
defined as follows:

. .

.

.
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— —

.

I F2

L

E18

[1 [Slo=
’18

L

%9

[1 [S20=

’19

E20

[1 ~
S30=F

20—

%21
[1 [’54()‘ F21

’23

[1 [
S6. =

’23

%24

’24

%5

.F25

%26

’26

%27

’27

’28

’28

’29

F=

-%
E~F2 - E/#?l

—

E4 IEs EU

F4 F5 Fn

1
Efj

F6

1
E7

‘7

1%?F9

1

c
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APPENDIXc

FORCING FUNCTIONS

The forcing functions Ul, U2, ad U3 are dependent uyon the

shape of the gust that the airplaue ie penetrattig. If the unsteady-
lift functions are known for the sharp-edge-gust condition, the
evaluation of the forcing function is very simple and may be calculated
for the sharp-edge-gustcondition from the following eqpatlons:

LA-4-C”
where, in the recurrence formula, 7 = ‘w” - represents the time

CAS
interval that the airplane has to travel befure the tail enters the
gusti For m < T, the terms having the subscript m - T are neglected
in the calculation of the forcing function. On the other hand,
for. m >T these terms are included. (The value of T must be taken
to the nearesttiteger. }

Because of the discontinuitiesof the functions Eg and &g

(see figs. 2 and 3~,7~ values of the forci~ ~ction exist-at both the

points m=l~+~ andrn= lG +9. In order to overcome this

difficulty when evaluating the recurrence formula, two values of the
forcing function are calculated at this point-. The recurrence formula is

1%+9 andm=z~+~byu= of theevaluated at times m =

first value of the discontinuityand then reev~uated by use of the second
value. Therefore, the recurrence formula gives two-valued solutions of

the equations of motion at the points m = zti+~ 0.75
andm=lc+~.

In order to evaluate the formula at-time m + 1 and at-succeeding
intervals, the first-~olutionobtained from the recurrence formula is
neglected, thereby the second one is used as t_hesolution for succeeding
talc-ulatiens. The numerical solut~on to the equations of motion therefore
rcmtains disccmtinuities due to the functions Cg and C& . For most

g
cases, however, the magnitude of 1~ and z~” are approximately equal;
therefore, when these two distances are taken to the nearest integer
01’ m, 1“6 can be taken equal to ‘CL and only one discontinuity

appears in the solution.

.

-.

.
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For sa arbitrary gust shape, a
to be evaluated for determining the

number of Duhamelfs
forcing functions.

43

intqyals have
These operations

may be performed graphically or by various numerical methods shown in
referenie 5. The correspcmding forcing functions for the arbitrary gust
shape may be calculated frcm the following equations:

where
.

@w(s) =1~slCLgw(51 -
%Lxds

s) ~

u“

J

S1 d u~
Q+) = o CL&l - s) ds

ds

u

d %&3x as
3(s) =,JS1 Gg(sl - s)~

,

(C2)

(C3)

If the response of the airplane for a number of
shapes is required, am alternate method would be far
By first calculating the motions of the airplane for

arbitrary gust
more expeditious.
the sharp-edge-

g&t condition, the-motions for each degree of freedom may be considered.
as indicial responses in Duhsmel’s integral. When the gust shape is
utilized as the arbitrary forcing function, the response for each degree
of freedom may be calculated by Duhamells integral in a manner
analogous to that used in calculating UI, U2, and U3 for the

arbitrary gust shape. Although the calculation of the response for the
sharp-edge-gust condition would require additional work, the extra work
is negligible when two or more responses to arbitrary gust shapes are
desired.
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AIRPLANE PAIWETERS
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TABLE II

CALCULATED VAMES OF AIRIZANE STABILITY CONSTANTS INVOLVING

ONLY THE STICK-FIXED CONDITION FOR CIZNTEROF GRAVITY

AT 25 EERCENT M.A.C.

K1 = 1.9772 Q = 2.2272

Q = 0.36136 -“%= -1.1136

K3 = -0.28078 Klo = O

q = 0.041342 Ku = 7.8798

~ = 0.0075599 “-KU = o-

%= -0.0037799 K2~=o

.-

.

K7 = 12.180 K26 = 0.0067616

T
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TABLE III

TRANSFORMED UNSTEADY-LIFT FUNCTIONS DUE TO UNIT JUMP OF

ANGIJ3OF ATTACK ON WING AND TAIL FOR INFIKFI!lZ

ASPECT RATIO FOR DWi!ERVAL AS = 1.~ CHORDS

B(s) = 1- C&w(s)

Bo = 0.500

B1 = 0.280

B2 = 0.181

B3 = 0.133

B4 = 0.105

B5 = 0.088

B6 .=0.075

c(s) =1 - CL%(s)

co = 0.5CQ

cl = 0.240

C2 = 0.147

C3 = 0.106

C4 = 0.084

C5 .= 0.069

% = 0.057

-
. ..-. ——
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